

University of Portsmouth
School of Creative Technologies

Final year Project undertaken in partial fulfilment of the
requirements for the BSc (Honours) in Computer Games

Technology

Effective use of Git Version Control for multi-platform game
development

By

Alexander James Ryan Carter
778505

Supervisor: Dr Peter Howell
Project Unit: CT6CTPRO

May 2020

Project Type: Combined

I consent to my report in this attributed format (not anonymized), subject
to final approval by the Board of Examiners, being made available in the
Library Dissertation Repository and/or the school digital repositories for a
maximum of 10 years.

 ☑ YES NO

Alexander James Ryan Carter
UP 778505

1 | P a g e

Abstract
This project investigates how Git Version Control can be used for Game Development for multi-
platforms games. The research is conducted through a review of literature, findings from
experimentation, and results of implementation into the development of a mobile game. The
game produced is a dependency for the experiment to be conducted. The technology used in this
project was Git, SourceTree (Visual Git client), Unity 2019 (Game Engine), Visual Studio (IDE),
Adobe Photoshop (Pixel Manipulation), 3DSMax & Blender (3D Modelling), Google Drive (Online
Documenting) and Microsoft Word (Word Processing). The findings demonstrate how when used
in a specific workflow, Git can be used as a tool to aid developers in fluidly updating their games
for each platform with minimal manual interaction. The experimentation demonstrates how a
Unity project can have multiple versions of the same game on multiple platforms while remaining
a single file structure on local developer machines as well as online backups. The project also
outlines areas for further research and experimentation into potential alternative solutions.

Alexander James Ryan Carter
UP 778505

2 | P a g e

Effective use of Git
Version Control for
multi-platform game
development.
RESEARCH AND PROJECT DISSERTAION
ALEX CARTER – UP778505

Alexander James Ryan Carter
UP 778505

3 | P a g e

Table of Contents

Terminology .. 4

1.0 Project Outline.. 5

2.0 Professional Development ... 6

3.0 Literature Review ... 6

3.1 What is Git? ... 6

3.2 Why Git? .. 7

3.3 Documentation ... 8

3.4 Challenges ... 8

4.0 Methodology .. 9

5.0 Prototyping ... 10

5.1 Setup ... 10

5.2 Initialisation ... 10

5.3 Device Specific Testing .. 11

5.4 Theme Testing ... 12

5.5 Findings ... 13

6.0 Implementation .. 15

7.0 Testing... 16

8.0 Reflection .. 22

9.0 Unprecedented Encounters ... 23

10.0 Conclusion .. 24

11.0 Bibliography .. 25

12.0 Table of Figures .. 26

13.0 Table of Tables .. 26

14.0 Table of Appendices ... 26

Appendix 1 - Game Design Document .. 27

Appendix 2 - Blog Post .. 39

Alexander James Ryan Carter
UP 778505

4 | P a g e

Terminology

As Version control and game development terminology is not widely known, provided is a
description of terms found within this research project.

Multi-platform software is the ability for a piece of software to run on a variation of devices and
operating systems (e.g. PC, Mac, Android, IOS etc.) while maintaining the same aesthetic and
functionality.

Git is a piece of software which is the focus of this research project. It is what enables developers to
create software in a team for an unlimited amount of variations.

A Project is any piece of software being created either by one or many developers. It will have a
purpose and will have been designed to meet a selection of requirements.

Repositories (Repo’s) are how Git stores all versions of a single project in one contained file
structure. Files not ‘checked out’ are stored in a hidden ‘git’ folder so only files wanted are in the
project at any one time.

Checked out is a term meaning which commit/version of the project you currently have on your
local machine. These files will be tracked to see if any changes are made to them, and if so, allow
you to keep and share, or remove and revert to their original state.

A Remote is an online hosting copy of the repository. This is what allows other developers to access
the files from anywhere in the world, having an exact replica of the project as the rest of the team.

A Commit is a ‘snapshot’ of the changes to files by a developer. A repository is made up of commits
by either one or many developers. Commits also require a description to outline what has been done
since the last commit. This allows better tracking if something were to go wrong.

Branches are what allow developers to have their own copy of the project to work on without
interfering with other developers. Developers can create their changes/new features here and
merge to a shared branch when ready.

Merging is the act of combining branches. This will allow other developers to access the new
changes/features once it is ready, rather than working on a project which has partially complete
functionality.

A Diff is how developers can see what has been changed to a file before and after a commit by
themselves or others.

An IDE is an Integrated Development Environment. This is a piece of software that allows developers
to create software.

An Enum is a C# programming language feature which allows for a variable’s value to be from a
specific group of values. This is similar to a dropdown input field.

Unity is a game development engine. This software provides the tools a developer needs to create
and build games for supported platforms.

Alexander James Ryan Carter
UP 778505

5 | P a g e

1.0 Project Outline

This research will be around how to effectively use version control tools in order to simplify the
development of a cross-platform game. Through literature review and experimentation, this
research hopes to make it clearer on how to use version control efficiently for future game
development.

The games industry is ever growing and with that, so does the number of platforms available for
users to play them on. This becomes a challenge for developers as they need to make a build for
each platform that they wish the game to be playable on. Even though game engines have been
getting better at giving the options to build the same game to multiple platforms, it is not always as
simple as switching the target and hitting build.

The issues arise when the technology or features you wish to implement is not cross-platform,
meaning each platform you build for will differ slightly in the technology behind the scenes. An
example of this is with the Google Play Games backend for leader boards, achievements and
multiplayer networking available to android apps, but is not compatible with apps on the Apple IOS
platform.

Unity (Unity Technologies, 2019) will be the game engine of choice in order to develop a simple
game to conduct the experiment. For the version control technology, Git (Torvalds & Hamano, 2019)
will be used alongside Bitbucket (https://bitbucket.com) as the Git remote and SourceTree
(Atlassian, 2019) as the local visual interface into the Git repository.

The game itself is not part of the experiment but simply a means to conduct the research. The game
will be developed with an additional designer/artist. The research and participant will have creative
control on how the game is designed in order to implement the gameplay, features, technology and
amending the scenes user interface to work across the various devices the game will be available on.

The version control repository will house both platform versions as well as a platform neutral
version, being the main development of the base game without any technology backends
implemented. The platform specific versions will only have the technology they require for their
respective platforms.

By the end of the project there will be a duplicate of the same game, one using a differing backend
technology to the other. To verify whether the use of version control has been effective, an update
will be pushed to both versions and if no further necessary alterations must be made to those
versions, then the experiment has been successful.

https://bitbucket.com/

Alexander James Ryan Carter
UP 778505

6 | P a g e

2.0 Professional Development

This research is important to me because I currently make mobile games for the Google Play Store,
Amazons App Store and Apples App Store. This has caused issues when each platform has its own
requirements and limitations where features or technology in one version is not Compatible with
another. An example is when adding leader boards and achievements into games. Google have their
Google Play Games Application Programming Interface (API) which works great for Android devices
with the Google Play Services however, both Amazon and Apple devices do not allow this API to be
used, forcing the developers to use the services offered by each corresponding platform.

Using different services for each platform also means player data is fragmented which creates
barriers between competitive players wanting to compare their scores and achievements with their
friends. As a solution to this specific issue, in the future I would like to experiment in the idea of
creating my own online hosted games services offering cross-platform leader boards and
achievements.

3.0 Literature Review

When first thinking about using version control,
most wonder why they should use it. SoundSoftware
states “Version control reassures you and the people
you collaborate with, gives you the confidence to
carry out more ambitious experimental work, and
makes your everyday working processes simpler and
more satisfying.” (Soundsoftware, n.d.) which
combined with Figure 1, demonstrates the strong
opinions of the seemingly mandatory use of version
control with any creative project from professionals
in varying industries. The humour in the figure also
represents the consensus from professionals in the industry, whereby if a team is not using Git, they
are likely doing it wrong. “Git is a very useful skill to have and almost necessary in many companies.”
(Dev.to, 2020)

3.1 What is Git?
Git was first released in 2005 and originally developed by Linus Torvalds. Torvalds created it in order
to better manage the open-source nature of his other widely used software, the Linux Kernel. Linux
used to be managed through a similar version control system known as BitKeeper (BitMover Inc.,
2000), but decided to develop his very own alternative. There were some legal issues around the
creation of Git competing with BitKeeper, however the main reasons for its existence was due to a
new mandatory payed license agreement implemented in 2005. The slowness of the system was
also evident when challenged with a project the size of the Linux Kernel, Torvalds wrote. “Taking
tens of seconds to apply a patch just because the source base is big is just not acceptable.”
(McMillan, 2005).

The reasonable and sensible reason why Torvalds named his project ‘Git’ as still unknown however,
he has given a somewhat comedic response to the question in an email interview with PCWorld,
stating "I'm an egotistical bastard, so I name all my projects after myself. First Linux, now git."
(McMillan, 2005)

Figure 1 Should you use Version Control? (soundsoftware, nd)

Alexander James Ryan Carter
UP 778505

7 | P a g e

Imagine a system that, rather than saving duplicate copies
of your files every time it is changed, only the changes to a
file is saved. This is Git in a nutshell. This helps keep the file
size to a minimum and allows others to work on the same
file with only their changes being added to file, rather than
replace the entire file with their version. As shown in Figure
2, Git will ‘track’ the new changes to code with what was
changed, the original line number and the new line number. Developers can see these changes to
files in the ‘Diff’, which shows what is different from the last version.

3.2 Why Git?
When creating any type of creative project, creating versions is a good idea, whether it is for more
than one platform or not. As Loeliger and McCullough state, “No cautions, creative person starts a
project nowadays without a back-up strategy. Because data is ephemeral and can be lost easily—
through an errant code change or a catastrophic disk crash, say—it is wise to maintain a living
archive of all work.” (Loeliger & McCullough, 2012).

Without Version control, ensuring a project goes smoothly is made much more difficult as you would
have to save iterations of the project. This form of backing-up has three main restrictions. Firstly,
being file size, as the amount of storage taken up will multiply by the amount of iterations, plus the
additional amendments in each. The second restriction is if you need to roll back for any reason, you
can only roll back to the last time you iterated. It will also be difficult to work out which saved copy is
the one you want, without having larger than needed titles or supporting text documents. Lastly,
unless you are also making additional backups offline or paying for large online storage, you could
end up losing everything in the event of a disk corruption or if your development machine gets
stolen.

For larger projects where more than one person is working on the same project, the lack of version
control will be a hinder to the speed and efficiency of how they collaborate. This is another upside of
Git where there is no limit to how many creative individuals can work on one project simultaneously.

Git has not got the best reputation for being user friendly nor easy to use as a beginner. There is a
learning curve to be mastered. This, however, is the only drawback compared to the numerous
benefits for a project. Git, at its core, is a command-based software. This means by default, there is
no visual representation of the state of your project’s repository. This is where much of the bad
reputation comes from, as not everyone is comfortable with using command-based software and
won’t want to place their projects integrity on the press, or mis press, of blindly tapping a key.
Therefore, visual interfaces have been created to give Git users a visual representation of what is
happening. Git does have one built-in; however, it is only viewable after using a command within the
corresponding repository. Due to the complexity this can have when working on more than one
project, software like SourceTree were developed.

Figure 2 Screenshot of changed code in SourceTree

Alexander James Ryan Carter
UP 778505

8 | P a g e

3.3 Documentation
As Zhang states, “A design doc is the most useful tool for making sure the right work gets done.”
(Zhang, 2018). Therefore, the best place to start when creating a video game is the software design
document. This allows a developer to break down the game into the smallest bite size details in
order to start thinking about how it should be developed, with version control in mind.

The design document will include details about the technical details, requirements, game idea and
mechanics. Further break down will describe the scripts needed to run the game and how they
should be structured. This will allow the developer to have a better understanding of how the use of
version control can aid in creating variations of the same script to work across the intended
platforms.

3.4 Challenges
Joorabchi et al states “Developers currently treat the mobile app for each platform separately and
manually check that the functionality is preserved across multiple platforms.” (Joorabchi, Meshbah,
& Kruchten, 2013) which is still true today, however there are more tools to make this easier. One of
the biggest issues when it comes to mobile development is fragmentation within the mobile market.
Even though there are only a few popular platforms available (Android, IOS and Windows Phone) the
fragmentation between operating system version, screen sizes, performance, technical restrictions
and requirements etc make it difficult to develop for them all. “Each mobile platform is different
with regard to the user interface, user experience, Human Computer Interaction (HCI) standards, user
expectations, user interaction metaphors, programming languages, API/SDK, and supported tools.”
(Joorabchi, Meshbah, & Kruchten, 2013)

Programming languages is an example of a technical hurdle between platforms. Android uses Java
(Sun Microsystems, 1995) as its programming language for its operating system and apps, compared
to Apple’s IOS which uses its own bespoke language, Swift (Apple Inc., 2014). Both Apple and Google
have provided their own Integrated Development Environments (IDE) to allow developers to create
apps on their respective platforms. The issue is because both use different languages, making an app
for both can be tedious having to duplicate the work for both and knowing how to do so in the
corresponding language. This is where Game Engines have made life easier for game developers
specifically as many of the most popular engines have a built-in pipeline which runs the project
through Googles and Apples compiler, which translates what you have done into their languages to
run on devices. Such engines/builders don’t seem to be as widely available for apps which are not
games. While this has reduced the workload for multi-platform development significantly, there are
still hurdles to overcome.

Even with tools like game engines which support multi-
platform, Perry et al found that the “current tool, process,
and project management support for this level of
parallelism is inadequate…” (Perry, Siy, & Votta, 2001).
While this research was conducted in 2001, technological
advances have been growing as the years progress which
would mean the findings Perry et al found would likely be
outdated. An example of this is how Unity are working on a
new featured called ‘Distribution Portal’ which streamlines
the publishing of games. From within the editor, you will be
able to publish straight to the platforms store. (Unity
Technologies , 2019)

Figure 3 Unity's new Distribution Portal

Alexander James Ryan Carter
UP 778505

9 | P a g e

4.0 Methodology

Much of the research will be conducted through experimentation and a review of existing literature.
The literature chosen to support this study where from a variation of sources from professions in
software and video game development. Focus points where chosen from different positions in a
project lifecycle, e.g. from planning and writing a design document to how version control can aid in
a multi-platform software development.

The design document is finalised as to what is intended to be created with milestone dates as to
when certain parts of the development lifecycle should occur, e.g. alpha and beta builds. These
dates can be seen in Appendix 1 - Game Design Document p11 along with a gantt chart of the
production lifecycle. As design documents are working documents, there is some sections still to be
filled in or yet to be determined (TBD).

Development of the artefact has been started and a build is already
working on android of the base game. The technical back-ends for
each platform will be added to start experimenting on how adding
new features carry over to the device specific branches. Thought
has gone into the coding of the game to make development easier
with regards to the different intended platforms. An example of this
is using Enums (programming variable type in C-Sharp) shown in
Figure 4 and Appendix 1 - Game Design Document p9, which makes
it easier to make variations of the objects in the game accessible
through code much simpler than without. This also means that
adding new objects to the game will be easier and little code will
need to be added, meaning less changes to be merged to the device
specific branches.

The experimentation to be conducted will be an important part in ensuring the project will run
smoothly. This is important because it ensured that technology and features will work in the project
before applying the tested approach onto the game in a pre-production state. Failure to experiment
may result in delays to publication due to wasted time on implementation that where not fit for
purpose. As shown in Figure 4, Experimentation will need to be conducted to confirm if the use of
Enums has indeed made the workflow of adding new object types easier.

Throughout the project there will be frequent updates to the development studio’s blog and social
media which will be a point of feedback when the game is in alpha and beta testing. The first blog is
available, shown in Appendix 2 - Blog Post. The blogs shall contain technical details in relation to the
use of Git, Version control, game engine usage and programming for the game.

Figure 4 Screenshot of Enum variable type in C-
Sharp

Alexander James Ryan Carter
UP 778505

10 | P a g e

5.0 Prototyping

In order to conduct the research, a prototype experiment must be produced to receive immediate
feedback and potential solutions to the problems identified. The prototype must be simple but have
enough complexity to resemble creating various versions of the same game in addition to creating
iterative updates after the fact. Key features the prototype must have are as follows:

• Folder for all files as a Git repository
• Simple text documents to resemble the games content
• Main development branch to resemble changes to base game
• Two or more branches to resemble platform specific versions
• An additional branch to resemble themed updates

The Git repository should then also be connected to a Git remote to replicate hosting a version-
controlled game with redundancy. This will allow the prototype to be available on any client
development machine that has Git installed.

5.1 Setup
Setup of a version control repository starts with the remote, creating an online repository ready to
be cloned to the client machine in preparation for development to begin. For this project, Bitbucket
(https://bitbucket.com) was chosen as it allows unlimited private repositories with up to five users
on their free tier. This is desired for small game developers so that their games’ source code and
Intellectual Property (IP) is protected from direct copyright, only allowing the public to see select
published content. The other most common Git remote platform is GitHub (https://github.com/),
however this is less desirable to smaller teams as their free tier limits the team to only public
repositories, allowing anyone to access and download the source code of the game. For larger
games, a paid plan or creating your own Git remote server would be necessary to overcome both
Bitbucket and GitHub’s storage restrictions. For transparency of the research, this prototype
experiment will be made public. (https://bitbucket.org/Spectrolite-Studio/disso)

5.2 Initialisation
For the prototype to resemble a video game, files
needed to be added to the repository. To keep things
simple these files will be text (.txt) files. As seen in
Figure 5, the first file created was named “MainMenu”
which will be where changes can be added to resemble
menu updates. Before committing this file to Git, a
branch is created called “Base_Working” which will be
the basis for the development of the ‘game’ before any
theoretical device specific or theme amendments are
made.

Figure 5 Prototype Experiment 'MainMenu.txt' file

https://bitbucket.com/
https://github.com/
https://bitbucket.org/Spectrolite-Studio/disso

Alexander James Ryan Carter
UP 778505

11 | P a g e

5.3 Device Specific Testing
Initial branches, following ‘Base_Working’ are the individual platform branches.
These branches are created to hold the individual features and settings unique
to each individual platform. These changes will only ever exist on these
branches and branches that derive from it, but never back into ‘Base_Working’.
These branches were named ‘Android_Working’ and IOS_Working’.

To keep track and to verify that device specific changes are staying on their
respective branches, more detail was added to the files which states the
platform the file should be for. On the Base branch the device was set to ‘null’,
meaning nothing has been specified yet, as shown in Figure 6. This is then
changed on the IOS and Android branches and should stay unchanged from
then onwards. This platform specification section is applied to each file in this
prototype to make it clear changes are being applied where planned.

To ensure prototype testing is as close to a real video game development as
possible, a more rigorous and realistic implementation was added. As most
mobile games have social features, e.g. leader boards and achievements, a file
was created to keep track of theoretical ‘API keys’ which would be used as a
reference to each leader board and achievement in a real game. These keys would also be device
specific due to each platform having their own social services as outlined previously. This file was
named ‘Social.txt’ and the ‘keys’ would be set to ‘null’ in the first instance on the Base branch until
changed in the platform specific branches. This can be seen in Figure 7, with the platform specific
versions shown in Figure 8 and Figure 9.

Figure 6 Prototype Experiment Menu
file with platform set to 'null' on Base
branch

Figure 7 Prototype Experiment 'Social.txt' file on Base
branch

Figure 8 Prototype Experiment 'Social.txt'
file on IOS branch

Figure 9 Prototype Experiment 'Social.txt'
file on Android branch

Alexander James Ryan Carter
UP 778505

12 | P a g e

5.4 Theme Testing
To simulate adding a theme to the game only using text documents, ASCII art was added.
This is images made up of many characters from the ASCII (American Standard for
Information Interchange) character table. The ASCII art chosen is shown below in Figure
10. which will be added to all text files to resemble changes that may have been made to
introduce a theme to a game.

To start creating the themed version of the base
game, a new branch was created which would
contain the game along with the ASCII art, but no
platform specific changes that exist in the already
existing branches. This new branch was called
“Base_TempTheme”. The ASCII art was then pasted
at the bottom of each text file in the repository, as
shown in Figure 11 with the ‘Platform’ setting
remaining as ‘null’.

To test the theory that merging the theme into the
platform specific branches directly would cause issues, the
repository was forked, creating a replica of the project in its
current condition. Within this forked repository, when
merging the Base_TempTheme into Android_Working and
IOS_Working, there where seemingly no issues or conflicts.
This was expected, however there is now no efficient way for
the theme to be easily removed from the Android and IOS
branches, meaning a lot of extra steps would be involved, for
every platform branch, in order to revert the changes and
make a theme-less build. This is demonstrated in Figure 13
were the theme goes directly into the platform versions,
leaving only two platform branches with variation appose to
the desired four (two with the theme, and two without).

 This Git flow therefore does not work for
efficiency nor redundancy. The only way to
resolve this issue would be to then create a
new device specific branch, e.g.
Android_Working2, which would become
confusing after many theme iterations as to
which ‘working’ branch is still working.

Once returning to the original repository, the
test was repeated but this time by creating a
new branch from each platform ready for theme
changes to be added. These branches where
named “IOS_Theme” and “Android_Theme”.
This then ensures there is a version of each
platform with and without the theme in it,
allowing a revert build to be made to the end
users when the theme ends. These four versions
are identified by tags in Figure 12.

Figure 11 MainMenu text file on the Base_TempTheme
branch wit ASCII art

Figure 13 Forked repository for Theme -> Android & IOS mergers

Figure 12 Theme -> Android_Theme & IOS_Theme mergers

Figure 10 ASCII art of
a video game
character (Scratch,
n.d.)

Alexander James Ryan Carter
UP 778505

13 | P a g e

5.5 Findings
The prototype testing undertaken was successful and demonstrated the potential efficiency of using
Git for multi-platform game development if the correct Git-flow is followed strictly. The initial
platform specific test show how easy Git allows for multiple versions of the same game can exist
while working with the same source code with self-contained changes applied on top. These
changes can be critical for a platform specific build to work correctly, for example a social API key. If
these keys where overwritten from a base game update, this would not be noticeable in-engine and
would then cause delays in development where unforeseen issues would occur and would have to
be debugged to find the simple misconfiguration.

The theme testing worked well and provided clarity on potential issues with an opposing Git flow. In
order to remain efficient and continue being a project with redundancy, there must always be a
clean version of each platform specific game. This means it should work ‘out of the box’ whereby the
project can be launched, built and work as expected for an end user. When adding a theme to the
mix, this then adds an extra layer of potential complexity where there must be still a clean version of
each platform, but also a clean theme version of each. The prototype testing demonstrated this
working by at the end having a total of five versions of the same game; Base, Android, IOS, Android
with theme and IOS with theme. In theory at any one time these versions should be able to be built
ready for the end user.

In order to better visualise this Git flow, a diagram was made to show the order in which mergers
should occur and to be followed strictly to keep each version clean and working.

Figure 14 shows the hierarchy of branches and in which direction the merges should happen. This is
to ensure the Base Game contents stays clean of any settings which could conflict with content
specific to each platform. The Base Game branch in this graph is the highest in the hierarchy, with
device specific branches below, followed by the theme branch, then ending with the themed device
specific branches. This flow shows how the further away from the Base Game the branches are, the
more unique and specific the contents will be.

Figure 14 Git Findings Flow Graph.

Alexander James Ryan Carter
UP 778505

14 | P a g e

For the purpose of further explanation, see the below scenarios:

Scenario 1:
A game update is added onto the Base
branch. For this change to be publicly
available, Base must then be merged into
the Android and IOS branches, built, and
uploaded to their respected developer
consoles.

• Base -> Android -> Build and publish
o (merge changes on Base into Android)
• Base -> IOS -> Build and publish
o (merge changes on Base into IOS)

Scenario 2:
It is November and a Christmas Update
has been planned to be live for the
duration of December. A Temporary
branch is created off the Base branch to
hold these temporary changes. Once the
theme has been added, a temporary
branch must be created for each platform
to hold the device specific changes in
addition to the theme. This is where the
Android Theme and IOS Theme branches
are created, off their respected platform
branches. The Temporary branch is then
merged into these new platform theme
branches, adding the theme to each
platform without interfering with the
permanent device specific benches.

• Base -> Temporary
o (new branch from Base with added theme

changes)
• Android -> Android Theme
o (new branch from Android)
• IOS -> IOS Theme
o (new branch from IOS)
• Temporary -> Android Theme -> Build

and publish
o (merge theme into new android theme

branch)
• Temporary -> IOS Theme -> Build and

publish
o (merge theme into new IOS theme branch)

Scenario 3:
It is the middle of December and a
Christmas build is live on both the Apple
and Google app stores. A bug has been
fixed in the game which must go out to
players immediately. This change has
been applied to the Base branch and
must now be merged into the Android
and IOS branches. These branches do not
contain the current Christmas theme,
meaning more merges must be made to
update the current live game. Base needs
to be merged into the Temporary branch
so we have a version of the game with
the fix and the theme. This then needs to
be merged into the Android Theme and
IOS Theme branches. We can now build
the theme branches to update the
players versions, as well as have a build
ready with the bug but without the
Christmas theme ready for January.

• Base -> Android
o (merge changes on Base into Android)
• Base -> IOS
o (merge changes on Base into IOS)
• Base -> Temporary
o (merge changes on Base into Temporary

theme)
• Temporary -> Android Theme -> Build

and publish
o (merge temporary theme into android theme

branch)
• Temporary -> IOS Theme -> Build and

publish
o (merge temporary theme into IOS theme

branch)

Alexander James Ryan Carter
UP 778505

15 | P a g e

6.0 Implementation

Due to circumstances outlined in section 9.0, the game in development will
not be finished to publication standards as originally intended; however,
will still meet the needs for testing the implementation of the Git flow.

The game was created using techniques aimed at making Git easier, for
example using Prefab objects. Prefab’s are Unity Game objects saved in a
state and can allow changes to an Object in a scene without changing the
scene file itself. The intention of this is to minimise the possibility of merge
conflicts between branches with Scene files.

An example of a prefab implemented into the game was the objects being
spawned. Each model to be spawned had a prefab made from it to ensure
the scale was correct when spawned, as shown in Figure 15. This helped
minimise the amount of code where scaling of objects is no longer needed
to be done at run-time. Another prefab example is the menu table, shown in
Figure 16. This table is used to show the player the Play, Leader board and
Achievements icons which can be touched to load their functions. This table
is a prefab as it means when adding a theme to the game, themed assets can
be added to the table without affecting the scene file itself.

Another Technique used as outlined in in section 4.0 is using the C# programming language feature
called Enums. This is a variable type which can define a state, where the value can only be one of a
specified value, for example ‘Sword’ in Figure 17. Enums are used for the different type and colour of
objects that are to be spawned. This should aid in reducing the
amount of programming needed when changing to a theme as
only the object type’s will be needed to change. Another C#
feature was used alongside the Enums which was a Switch
Case. This is an alternate to using ‘If statements’ where the
value of each Enums has a contained section of code to be
called. This implementation can be seen in Figure 18 where a
Switch Case is used to spawn the correct prefab object,
depending on the value of the Enum type.

Figure 15 Game Object Prefab of a
Shield

Figure 16 Game Object Prefab of the
Menu Table

Figure 17 Enum Dropdown in Unity Editor Inspector.

Figure 18 C# Switch Case for spawning the correct prefab from Enum type

Alexander James Ryan Carter
UP 778505

16 | P a g e

7.0 Testing
Throughout testing, screenshots were taken from the editor and device. This is to keep a record of
how the game looks before and after merging into the device specific branches. Any discrepancies in
visual or usability will highlight if testing was successful or not.

Table 1 Base -> Android
Base branch Android branch

Base branch Editor screenshot

+

Android Build Settings

 =

Android build screenshot

Table 2 Base -> IOS
Base branch Device screenshot

Base branch Editor screenshot

+

IOS Build Settings

=

IOS build Screenshot

Alexander James Ryan Carter
UP 778505

17 | P a g e

The outcome of the first series of test shown in Table 1 and Table 2 were successful while also
expected. There were no device specific changes other than those required to build the game to the
device. The next step was to add social features in the form of Google Play Games and Game Centre
for Android and IOS to their specific branches. A change will then be made to the game and merged
into those branches to simulate a game update. To succeed this test, no further changes should be
required to the game between merging and building.

Table 3 Android -> Android + Social
Base branch Android branch

Base branch Editor screenshot with added items
to table prefab

+

Android branch with social features and Sign
in/out buttons added to scene.

 =

Android build with social

After adding the Google Play Games social features onto the Android specific branch, merging an
update from the Base branch and building the game worked with no erros. This merge
demenstrated in Table 3 shows how changes that exist in the Android branch (the sign in/out
buttons) carry over as well as the additions in the Base branch (the cosmetic items). Google requires
games using Google Play Games to have the option to sign in and out. This is different for IOS with
Game Center where Apple does not allow users to change their Game Center account from within
individual apps.

Alexander James Ryan Carter
UP 778505

18 | P a g e

Table 4 Base -> IOS + Social
Base branch IOS branch

Base branch Editor screenshot with added items
to table prefab

+

IOS branch with social features. No extra visual
changes. Game Center added to social buttons.

=

IOS build with social

The Base -> IOS merge was successful, as seen in the resulted screenshot in Table 4 from the IOS
Device with Game Center activated. As the IOS version does not contain any visual additions not
already in the Base branch, the merge was not as challenging compared to the Android merge. This
merge demonstrates how differences in the social features stayed in the IOS branch after merge.

Alexander James Ryan Carter
UP 778505

19 | P a g e

Table 5 Theme -> IOS Theme Branch
Theme branch IOS branch

Theme branch Editor screenshot with added
items to table prefab and lighting in scene

+

IOS branch Editor screenshot with social features

=

IOS social + theme

Adding a theme to the game was the most challenging task for Git with the amount of changes
having to be made in one go. This was not as difficult for the IOS Themed version as there are no
visual differences between the Base and the IOS versions, as shown in Table 5. This merge was a
success and shows how the cosmetic items in the Base game where replaced with the items in the
theme branch.

Alexander James Ryan Carter
UP 778505

20 | P a g e

Table 6 Theme -> Android Theme Branch
Theme branch Android branch

Theme branch Editor screenshot with added
items to table prefab and lighting in scene

+

Android branch Editor screenshot with social
features

=

Android social + theme

The Android Themed Version merge did not pass the initial test. This was due to a merge conflict,
resulting in a choice of keeping the theme changes to the scene, or the sign in/out social buttons in
the scene. As shown in the result device screenshot in Table 6, the android build now has the
Halloween theme with social features but have lost the ability to sign in/out manually. Ways around
this would be to make the sign in/out buttons a prefab spawned from a script at run-time; however,
is not desirable.

After some further research into the issue, a tool built into Unity for this task was discovered. This
Tool is called UnityYAMLMerge and is a command-line tool accessible to Git clients. This tool’s
purpose is to “…merge scene and prefab files in a semantically correct way.” (Unity Technologies ,
2019) which cannot be handled cleanly with conventional Git tools alone. After integrating this tool
into the Sourcetree Git client, the merge was tested again on a new branch as demonstrated in
Figure 19 below.

Figure 19 Git test branch for the UnityYAMLMerge tool.

Alexander James Ryan Carter
UP 778505

21 | P a g e

Table 7 Theme -> Android Theme Branch (Using UnityYAMLMerge)
Theme branch Android branch

Theme branch Editor screenshot with added
items to table prefab and lighting in scene

+

Android branch Editor screenshot with social
features

=

Android social + theme

When repeating the same merge once again, the merge conflict appeared but this time allowed for
the external tool to be used to handle the conflict. Once this tool had completed its task, a build was
made and succeeded. The new Android device screenshot in Table 7 shows both scenes’ changes
now successfully exist in the Android theme branch.

As seen in Figure 20, The merge was successful, and an
extra note was added to the commit message
informing of the conflict and specifying which file in
particular was involved. This allows for better tracking
if something where to have gone wrong in the project
and can be pointed back to this specific diff resolution.
As the merge was successful, no further actions were required; however, if an issue persisted to
exist then further research into alternative Unity diff tools would be required, or manual
intervention to correct the conflict within Unity.

Figure 20 Successful diff resolution from merge conflict

Alexander James Ryan Carter
UP 778505

22 | P a g e

8.0 Reflection

The test results produced from both the prototype and implementation reflect how Git can be used
for a multi-platform game development on a small to medium scale. The tests where exhaustive to a
familiar level of complexity found within the development teams’ games and sets a good example
for a future implementation of the Git flow identified in section 5.5. The experimentation
demonstrated how Git has the ability to be used as a game development tool alongside having the
expected features such as redundancy, online backup, collaboration, feature testing and project
version handling.

The findings of the UnityYAMLMerge tool was great as it
appears to work without issue for Unity Scene files, one
of the concerns causing for this research to be conducted.
While the tool only had to be used once, it set a good
expectation of its potential for future merge conflicts. The
tool is relatively hidden within the Unity Engine’s source
files and its presence in-engine is seemingly non-existent
when using Git. It seems when it comes to version control
in game engines, Unity still has progress to be made in
order to make it a more seamless integration and reflect
its importance within the game development industry.
Unreal Engine 4 (Epic Games, 2014) has supported in-
editor access to version control tools since the launch of version 4. This can be seen in Figure 21
showing the ‘Source Control’ options for an unreal project.

As demonstrated in Figure 22, Unreal
supports Git, Subversion and Perforce
version control solutions out of the box,
whereas Unity only supports Perforce
and PlasticSCM, shown in Figure 23.
Unity does however have the option to
make Meta files visible and serialise
binary files into a text format, so files
are more easily read and understood by
other solutions, like Git. If Unity had
this level of integration in-editor for Git
it would widen the possibilities to view
diff’s in the Editor, seeing exactly which
changes may be conflicting and have
greater control around how to handle a
merge.

Figure 21 Unreal Engine 4's built-in version control

Figure 22 Unreal Engine 4 Version Control Support options

Figure 23 Unity 2019 Version Control Support options

Alexander James Ryan Carter
UP 778505

23 | P a g e

9.0 Unprecedented Encounters

As of January 2020, the world saw one of the largest and trickiest threats in recent history with the
spread of the newly discovered Covid-19 virus, developing into a worldwide pandemic by March
2020. This Has affected everyone on every scale be it mourning loss, job losses, staff shortages,
financial implications, mental health, logistical challenges, production vs demand, pressure on the
internet infrastructure, challenges of working from home, and the knock-on effect for the entire
education system. This project was no exception from becoming affected by this. Here I will outline
what issues were encountered.

The original plan for this project was to, by the end, have a published game on both the Google Play
Store and the Apple App Store. This was to ensure the research was accurate to the purpose of a
real, published game in development. This would allow for the public to provide feedback on any
issues and the general user experience for each platform on a handful of each sub-device. The
official release of the game was pushed back due to staff shortages at Google, as evident in Figure 24
below. This staff shortage meant that every app update uploaded would encounter a review time of
longer than a week before it could be even internally tested. This added a delay to each iterative
update which meant that the game could not be tested by the development team as quickly, nor be
tested by external testers for feedback. The same review times where implemented into Apple’s App
Store which meant also without a Mac computer, even with the source code, it is impossible to
make a build to test with the development team at all.

Due to the decision that the game should not be published, the blog posting of development
progress was also ceased. This meant that the progress of the game could not be publicly
documented and reduce confusion around its development and release. A later release date is
planned for, once development and testing can continue as normal.

Figure 24 Google Play Console longer review times

Alexander James Ryan Carter
UP 778505

24 | P a g e

10.0 Conclusion

In conclusion to the research and project testing undertaken, an efficient Git flow has been
discovered which works well for the scenarios outlined in section 5.5. This Git flow has succeeded in
testing the prototype and implementation for reducing the number of extra steps required to
update a game on more than one platform. While an extra step was required during the
implementation due to a merge conflict, this still resulted in no manual repairs to the game’s source
files itself for continuous functionality to proceed and work as intended.

For the time being, Git and the Git flow outlined is a capable solution for multi-platform game
development. While alternative solutions serve well for larger teams and organisations, more
research and testing would need to be conducted for the specific scenarios defined. Perforce is a
popular choice for large game development studios, as evident as being the main supported version
control provider in both the Unity and Unreal engines. While Perforce is free for small teams, it does
require the remote server to be self-hosting either on premises or in the cloud, introducing more
running costs than the current implementation of Bitbucket or GitHub.

After using the ‘Fork’ feature in Git during the prototype test, it appears this
could also be an alternative Git flow option. In this flow, a Fork of the project
would be made, creating a replica in its current state. This Forked version could
then be used to contain a themed version, removing the possibility of human
error when it comes to merging the theme into the device specific branches. If a
bug fix or an update is needed for the base game, this could then be applied to
the original repository and synced to the forked clone, applying the latest
commits on the existing branches. This option to sync changes between remote
repositories is shown in Figure 25. In this Git flow, only the Forked repositories
would contain theme branches. This Git flow would require more testing as a
possible alternative to the current solution in order to compare the pros and cons
of each method.

Considering the support both Unity and Unreal 4 have for Perforce, it seems this
would also be an area for further research and experimentation in order to
compare the other solutions to version control used in the industry. While this
may incur additional costs, it could be a better solution for the scaling of projects
and teams. This experimentation would have to be done is a similar manner to
the research covered in this project where having multiple branches of the
project for each platform is a requirement. Due to limited research and documentation on this
specific topic it would be beneficial to compare the advantages and possible drawbacks.

Figure 25 Repository description
from Forked repo, allowing to
Sync the most recent changes
from the original

Alexander James Ryan Carter
UP 778505

25 | P a g e

11.0 Bibliography

Apple Inc. (2014). Swift [Programming Language]. California : Apple Inc.

Atlassian. (2019). Sourcetree . (Version 3.2.1) [Computer software]. Atlassian.

BitMover Inc. (2000). BitKeeper. [Computer Software].

Dev.to. (2020, Jan 8). Git cheatsheet for beginners. Retrieved from DEV: https://dev.to/duomly/git-
cheatsheet-for-beginners-5apl

Epic Games. (2014). Unreal Engine. (Version 4.1) [Computer Software]. Epic Games.

Joorabchi, M. E., Meshbah, A., & Kruchten, P. (2013). Real Challenges in Mobile App Development.
New Jersey: Institute of Electrical and Electronics Engineers.

Loeliger, J., & McCullough, M. (2012). Version Control with Git (2nd ed.). California: O'Reilly Media
Inc.

McMillan, R. (2005, April 20). After controversy, Torvalds begins work on "git". Retrieved from
PCWorld:
https://www.pcworld.idg.com.au/article/129776/after_controversy_torvalds_begins_work_
git_/

Perry, D. E., Siy, H. P., & Votta, L. G. (2001). Parallel changes in large-scale software development: an
observational case study. Texas: ACM Transactions on Software Engineering and
Methodology.

Scratch. (n.d.). scratch.mit.edu. Retrieved from Text Art!:
https://scratch.mit.edu/discuss/m/topic/280694/

Soundsoftware. (n.d.). Soundsoftware.ac.uk. Retrieved from Why use version control?:
http://soundsoftware.ac.uk/why-version-control

Sun Microsystems. (1995). Java [Programming Language]. California : Oracle.

Torvalds, L., & Hamano, J. (2019). Git. (version 2.21) [Computer software]. Retrieved from https://git-
scm.com/

Unity Technologies . (2019). Smart Merge. Retrieved from Unity Documentation:
https://docs.unity3d.com/Manual/SmartMerge.html

Unity Technologies . (2019). Unity Distribution Portal (Beta). Retrieved from Unity.com:
https://unity.com/unity-distribution-portal

Unity Technologies. (2019). Unity. (Version 2019.3) [Computer software]. Unity Technologies.

Zhang, A. (2018, July 13). How to write a good software design doc. Retrieved from
freecodecamp.org: https://www.freecodecamp.org/news/how-to-write-a-good-software-
design-document-66fcf019569c/

Alexander James Ryan Carter
UP 778505

26 | P a g e

12.0 Table of Figures

Figure 1 Should you use Version Control? (soundsoftware, nd) .. 6
Figure 2 Screenshot of changed code in SourceTree .. 7
Figure 3 Unity's new Distribution Portal ... 8
Figure 4 Screenshot of Enum variable type in C-Sharp ... 9
Figure 5 Prototype Experiment 'MainMenu.txt' file ... 10
Figure 6 Prototype Experiment Menu file with platform set to 'null' on Base branch 11
Figure 7 Prototype Experiment 'Social.txt' file on Base branch .. 11
Figure 8 Prototype Experiment 'Social.txt' file on IOS branch .. 11
Figure 9 Prototype Experiment 'Social.txt' file on Android branch .. 11
Figure 10 ASCII art of a video game character (Scratch, n.d.) .. 12
Figure 11 MainMenu text file on the Base_TempTheme branch wit ASCII art 12
Figure 12 Theme -> Android_Theme & IOS_Theme mergers ... 12
Figure 13 Forked repository for Theme -> Android & IOS mergers .. 12
Figure 14 Git Findings Flow Graph. ... 13
Figure 15 Game Object Prefab of a Shield .. 15
Figure 16 Game Object Prefab of the Menu Table ... 15
Figure 17 Enum Dropdown in Unity Editor Inspector. .. 15
Figure 18 C# Switch Case for spawning the correct prefab from Enum type 15
Figure 19 Git test branch for the UnityYAMLMerge tool. ... 20
Figure 20 Successful diff resolution from merge conflict ... 21
Figure 21 Unreal Engine 4's built-in version control ... 22
Figure 22 Unreal Engine 4 Version Control Support options .. 22
Figure 23 Unity 2019 Version Control Support options .. 22
Figure 24 Google Play Console longer review times ... 23
Figure 25 Repository description from Forked repo, allowing to Sync the most recent changes from
the original .. 24

13.0 Table of Tables

Table 1 Base -> Android .. 16
Table 2 Base -> IOS .. 16
Table 3 Android -> Android + Social .. 17
Table 4 Base -> IOS + Social... 18
Table 5 Theme -> IOS Theme Branch .. 19
Table 6 Theme -> Android Theme Branch .. 20
Table 7 Theme -> Android Theme Branch (Using UnityYAMLMerge) .. 21

14.0 Table of Appendices
Appendix 1 - Game Design Document .. 27
Appendix 2 - Blog Post .. 39

https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701111
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701112
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701113
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701114
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701115
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701116
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701117
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701118
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701119
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701120
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701121
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701122
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701123
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701124
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701125
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701126
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701127
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701128
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701129
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701130
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701131
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701132
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701133
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701134
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701135
https://portdotacdotuk-my.sharepoint.com/personal/up778505_port_ac_uk/Documents/Dissertation%20Prep+Res.docx#_Toc40701135

Alexander James Ryan Carter
UP 778505

27 | P a g e

Appendix 1 - Game Design Document

Alexander James Ryan Carter
UP 778505

28 | P a g e

Alexander James Ryan Carter
UP 778505

29 | P a g e

Alexander James Ryan Carter
UP 778505

30 | P a g e

Alexander James Ryan Carter
UP 778505

31 | P a g e

Alexander James Ryan Carter
UP 778505

32 | P a g e

Alexander James Ryan Carter
UP 778505

33 | P a g e

Alexander James Ryan Carter
UP 778505

34 | P a g e

Alexander James Ryan Carter
UP 778505

35 | P a g e

Alexander James Ryan Carter
UP 778505

36 | P a g e

Alexander James Ryan Carter
UP 778505

37 | P a g e

Alexander James Ryan Carter
UP 778505

38 | P a g e

Alexander James Ryan Carter
UP 778505

39 | P a g e

Appendix 2 - Blog Post

Alexander James Ryan Carter
UP 778505

40 | P a g e

	Terminology
	1.0 Project Outline
	2.0 Professional Development
	3.0 Literature Review
	3.1 What is Git?
	3.2 Why Git?
	3.3 Documentation
	3.4 Challenges

	4.0 Methodology
	5.0 Prototyping
	5.1 Setup
	5.2 Initialisation
	5.3 Device Specific Testing
	5.4 Theme Testing
	5.5 Findings

	6.0 Implementation
	7.0 Testing
	8.0 Reflection
	9.0 Unprecedented Encounters
	10.0 Conclusion
	11.0 Bibliography
	12.0 Table of Figures
	13.0 Table of Tables
	14.0 Table of Appendices
	Appendix 1 - Game Design Document
	Appendix 2 - Blog Post

